General Decay Stability for Stochastic Functional Differential Equations with Infinite Delay
نویسندگان
چکیده
So far there are not many results on the stability for stochastic functional differential equations with infinite delay. Themain aim of this paper is to establish some new criteria on the stability with general decay rate for stochastic functional differential equations with infinite delay. To illustrate the applications of our theories clearly, this paper also examines a scalar infinite delay stochastic functional differential equations with polynomial coefficients.
منابع مشابه
Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملStochastic differential inclusions of semimonotone type in Hilbert spaces
In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...
متن کاملExistence and continuous dependence for fractional neutral functional differential equations
In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.
متن کاملTotal Stability in Abstract Functional Differential Equations with Infinite Delay
Recently, authors [2] have discussed some equivalent relations for ρ-uniform stabilities of a given equation and those of its limiting equations by using the skew product flow constructed by quasi-processes on a general metric space. In 1992, Murakami and Yoshizawa [6] pointed out that for functional differential equations with infinite delay on a fading memory space B = B((−∞, 0];R) ρ-stabilit...
متن کامل